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Abstract

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and

phonic tics, which several different theories, such as basal ganglia-thalamo-cortical

loop dysfunction and amygdala hypersensitivity, have sought to explain. Previous

research has shown dynamic changes in the brain prior to tic onset leading to tics,

and this study aims to investigate the contribution of network dynamics to them. For

this, we have employed three methods of functional connectivity to resting-state

fMRI data – namely the static, the sliding window dynamic and the ICA based esti-

mated dynamic; followed by an examination of the static and dynamic network topo-

logical properties. A leave-one-out (LOO-) validated regression model with LASSO

regularization was used to identify the key predictors. The relevant predictors

pointed to dysfunction of the primary motor cortex, the prefrontal-basal ganglia loop

and amygdala-mediated visual social processing network. This is in line with a

recently proposed social decision-making dysfunction hypothesis, opening new hori-

zons in understanding tic pathophysiology.
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1 | INTRODUCTION

Tourette syndrome (TS) is a complex and chronic neuropsychiatric dis-

order that presents itself with other comorbidities, such as attention

deficit disorder (ADHD) and obsessive–compulsive disorder (OCD), in

up to 90% of cases (Cavanna et al., 2009; Robertson et al., 2017). This

neurodevelopmental condition is characterized by involuntary move-

ments and vocalizations, known as tics, often present along with emo-

tional and social disturbances (Robertson et al., 2017). There is a

growing tendency to understand complex neuropsychiatric disorders

such as TS as a network problem rather than as isolated disturbances

in specific brain regions (Bassett et al., 2018). For this reason, the

interplay within and between large-scale brain networks through the

means of functional connectivity analyses is gaining particular interest.

Functional connectivity is generally defined as the ‘temporal coinci-

dence of spatially distant neurophysiological events’ (Friston, 1994)

and can be assessed at different spatial or temporal scales

(Friston, 2011). Functional magnetic resonance imaging (fMRI) is fre-

quently employed as a non-invasive tool to study functional connec-

tivity with relatively high spatial resolution (Rogers et al., 2007). In this
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context, functional connectivity is most commonly assessed as a

‘static phenomenon’ by quantifying the correlation of the entire

BOLD time-series extracted from two different locations in the brain.

Abnormal patterns of static functional connectivity in different brain

circuits have been shown in TS (Ramkiran et al., 2019; Wen, Liu,

Rekik, Wang, Chen, et al., 2017; Worbe et al., 2012), and several dif-

ferent theories, such as failure of network maturation (Albin &

Mink, 2006), lack of inhibition (Jackson et al., 2015), basal ganglia cir-

cuits dysfunction (Ramkiran et al., 2019) and amygdala dysfunction

(Neuner et al., 2010), have tried to explain the different dimensions of

the disorder independently. However, several cardinal features, such

as the nature of the tics, lifetime prevalence of the disorder and gen-

der disparity, remain unexplained by these different theories. A more

recent hypothesis proposes TS to be a disorder of the social decision-

making network (SDM) (Albin, 2018), bringing together all the previ-

ous models and unexplained cardinal features under one umbrella.

This hypothesis puts forth the idea that TS is a disorder of social com-

munication resulting from developmental abnormalities at several

levels of the SDM (Albin, 2018).

In contrast to the more commonly studied static functional con-

nectivity, dynamic functional connectivity (DFC) refers to the analysis

of functional connectivity changes over time. It is effective in captur-

ing temporal variations in spatial connectivity, enabling the identifica-

tion of different mental states at rest (Mooneyham et al., 2017).

Several studies have shown this method to be useful in identifying

transient states of mindfulness and mind-wandering (Mooneyham

et al., 2017), and aberrant transient states in schizophrenia (Damaraju

et al., 2014) and traumatic brain injury (Vergara et al., 2018).

There are multiple approaches for obtaining the DFC from fMRI

data. The most common approach is the use of a sliding-window to

capture connectivity in short time periods for the whole duration of

the scan. This approach is useful in reliably capturing slow dynamics

as the frequency is limited by temporal smoothing, that is, the length

of the sliding window. Typically recommended window lengths range

from 20 to 30 times the repetition time of the fMRI sequence

(Hutchison et al., 2013). Another more recent approach to DFC is an

estimated form of DFC as opposed to the direct sliding window

approach. In this manuscript, we abbreviate the direct sliding window

approach as dSW and the ICA based dynamic connectivity as dICA.

The estimated connectivity in dICA is obtained via a group level ICA

decomposition of static connectivity, followed by a generalized

psycho-physiological interaction model (gPPI) back-projection

(Alfonso Nieto-Castanon, 2020) of the identified IC nertworks. The

gPPI back-projection estimates the connectivity at a certain timepoint

as a weighted sum of the identified ICs, under the assumption that

the BOLD activity of a region at the next time point depends on its

current BOLD activity and its interaction with all the other regions

(functional connectivity). The advantage of this approach is that it

allows investigation of instantaneous connectivity at a higher signal-

to-noise ratio, as noise ICs can be removed prior to back projection.

The disadvantage is, however, that the connectivity is estimated and

not true, and the identification of ICs depends on the dataset. In con-

trast, the dSW captures true connectivity directly at the individual

level, but it is limited by the minimum window length and therefore

can only be used to capture slow dynamics. As patients can experi-

ence tics at any point in time, and this sudden onset of tics may be

attributed to sudden network switching; it neccessitates the investiga-

tion of network dynamics. The sudden onset of tics during the resting

state has been monitored using a video camera system (Neuner

et al., 2007), and changes in brain activation patterns from 2 s before

tic onset until the actual tic onset have been shown in previous stud-

ies (Neuner et al., 2014). As both the dSW and dICA approaches pro-

vide different aspects of information on dynamics, we decided to

include both approaches in our investigation.

The assessment of network topological properties of the brain

allows us to understand the organization and communication strate-

gies employed by the brain. Previous studies on TS have shown dis-

ruptions in the balance between local specialization and global

integration mechanisms in whole brain-structural networks (Wen, Liu,

Rekik, Wang, Zhang, et al., 2017) and defects in network maturation,

reflected by losses of hub regions in resting-state cortico-basal gang-

lia functional networks (Worbe et al., 2012). Classical static functional

networks show the overall picture of functional organization (division

of roles, designation of subnetworks for specialized information

processing etc.) in the brain (Achard & Bullmore, 2007; Alfonso

Nieto-Castanon, 2020; Bassett & Bullmore, 2006; Bullmore &

Sporns, 2009; Rubinov & Sporns, 2010; Sizemore & Bassett, 2018;

Sporns, 2013; Whitfield-Gabrieli & Nieto-Castanon, 2012). However,

they lack information about transients or fluctuations in network

organization. To bridge this gap, there is growing interest in the tem-

poral network organization or the dynamic graph theory approach

(Sizemore & Bassett, 2018), which offers temporal equivalents of the

static graph metrics. Such measures of dynamic brain network struc-

ture may reveal important insights into the pathophysiology of men-

tal disorders and different applications (e.g., multi-layer community

analysis) generated promising biomarkers of schizophrenia (Braun

et al., 2016), attention deficit hyperactivity disorder (ADHD) (Yin

et al., 2022), and autism (Xie et al., 2022). To the best of our knowl-

edge, this study is the first of its kind to investigate dynamic network

organization in TS.

With converging evidence showing TS as a network disorder and

the need to obtain a complete picture of tic pathophysiology, the

investigation of network dynamics seems to be a crucial step. There-

fore, in this study, we have examined the ability of direct and indirect

dynamic network metrics to predict tic severity.

2 | METHODS

2.1 | Tic severity

The gold standard for assessing the severity of tics in patients with TS

and other tic disorders is the Yale global tic severity scale (YGTSS). It

evaluates the number, frequency, intensity, complexity, and interfer-

ence of motor and phonic symptoms (Leckman et al., 1989). It is a

semi-structured interview followed by a questionnaire which results
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in five different ratings: total motor tic score, total verbal tic score,

total tic score (motor + verbal), overall impairment rating, which

reflects the impact of tics on their daily lives and activities and a global

severity score. The global score is determined by adding together the

total motor, verbal and impairment scores and ranges from 0 to 100.

In clinical practice, the YGTSS is used to track changes in tic behaviour

or to monitor treatment outcomes (Storch et al., 2011). A recent study

has shown YGTSS to be robust against the effects of comorbidities

such as OCD and ADHD, making it a good choice to investigate the

pathophysiology of tics independently of other comorbidities (Haas

et al., 2021).

2.2 | Participants

Following prior informed consent, a total of 36 adult patients fulfilling

the DSM-IV-TR (American Psychiatric Association, 2000) criteria for

TS participated in this study. Of these, five patients additionally suf-

fered from obsessive–compulsive disorder (OCD), and two from

attention-deficit-hyperactivity disorder (ADHD), as per the DSM-IV

classification. Fourteen of the patients were on medication. Tic sever-

ity was measured using the YGTSS. Subsets of subjects from this

dataset focusing on other analysis strategies have been previously

published in Neuner et al. (2014), Ramkiran et al. (2019) and Werner

et al. (2010). Subjects with incomplete imaging or demographic data

or with images corrupted by artefacts (motion, coverage, susceptibility

etc.) were excluded from further analyses. After exclusion, 17 patients

(12 male, 5 female, age: 32 ± 11 years) were subjected to further ana-

lyses, demographic details of which can be found in Table 1. All

patients had normal or corrected-to-normal vision, no hearing loss

and reported a strong right-hand preference (Werner et al., 2010).

The study was conducted according to the Declaration of Helsinki

and under granted approval from the ethics committee of the medical

faculty RWTH Aachen, Germany.

2.3 | Data acquisition

The image acquisition protocol comprised structural MRI, resting-state

fMRI, task fMRI and diffusion MRI sessions acquired on a 1.5 T

whole-body MR system (Sonata, Siemens, Germany) at the For-

schungszentrum Jülich. An MR-compatible video camera system was

used to monitor tics in TS patients during the scanning sessions

(Neuner et al., 2007). The resting-state fMRI data were acquired using

a T2*-weighted echo-planar imaging sequence (scanning parameters:

TE = 60 ms, TR = 3200 ms, flip angle = 90�, 30 axial slices 4 mm

thick, FOV = 200 mm, in-plane resolution = 3.125 mm � 3.125 mm,

12 min 220 volumes, eyes closed) and structural MRI acquired using a

T1-weighted gradient-echo MP-RAGE sequence (scanning parame-

ters: TI = 1200 ms, TR = 2200 ms, TE = 3.93 ms, 15� flip angle,

FOV = 256 � 256 mm2, matrix size = 256 � 256, 176 sagittal slices

generated, slice thickness = 1 mm, resolution = 1 mm isotropic) were

used for further investigation in this study.

2.4 | Data pre-processing

The data were processed using standard pre-processing pipelines in

CONN v20.b (Whitfield-Gabrieli & Nieto-Castanon, 2012), based on

SPM12 (Friston et al., 1994). Functional pre-processing involved the

following steps: realignment and unwarp (for motion and field map

correction), translation of the image centre (to the origin 0,0,0), slice-

timing correction, outlier scan detection and scrubbing (using ART:

artefact removal toolbox, parameters: global-signal z-value threshold:

5, subject-motion threshold: 0.9 mm), and spatial normalization to an

MNI152 (2 mm) template (using SPM's unified segmentation

(Ashburner & Friston, 2005), parameters: functional target resolution

2 mm) and functional smoothing (FWHM 8 mm). Pre-processing of

the structural images involved the following steps: translation of the

image centre (to the origin 0,0,0), segmentation and normalization into

MNI-space (using SPM's unified segmentation (Ashburner &

Friston, 2005), parameters: structural target resolution: 1 mm). Pre-

processing was followed by nuisance regression of the following con-

founds: noise components of WM and CSF (aCompCor: first five prin-

cipal components of time series (Whitfield-Gabrieli & Nieto-

Castanon, 2012)), estimated subject-motion parameters (six realign-

ment parameters and their first derivatives), outlier scans identified

TABLE 1 Demographic data – Age, gender, medication and
comorbidities of all participants.

Age Gender Medication YGTSS Comorbidities

41 F - 33

36 M - 68

21 M 10 mg ESC 40

22 F - 57

45 M 200 mg TIA 59

56 F 40 mg CIT,

400 mg CBZ

63 OCD

46 F - 46

46 M - 54

28 M - 17

39 M 200 mg AMS,

50 mg TIA

80 OCD

24 M - 2

27 M - 63 OCD, ADHD

25 M 20 mg CIT,

200 mg TIA

66 OCD

26 M 50 mg TRIM 44

22 F 10 mg ARI,

20 mg FLX

27

19 M 80 mg ZPR 60

21 M - 62

Abbreviations: AHDH, attention deficit hyperactivity disorder; AMS,

amisulpiride; ARI, aripiprazole; CBZ, carbamazepine; CIT, citalopram; ESC,

escitalopram; FLX, fluoxetine; MPH, methylphenidate; OCD, obsessive–
compulsive disorder; PIM, pimozide; TIA, tiapride; TRIM, trimipramine;

ZPR, ziprasidone.
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(scrubbing) and the effect of rest (to compensate for initial magnetiza-

tion transient). This was followed by temporal band-pass filtering at

0.008–0.09 Hz (to minimize the impact of physiological noise stem-

ming from respiration and heartbeat) and linear detrending Figure 1a

outlines the pre-processing steps.

2.5 | Static and dynamic connectivity

All connectivity analyses were performed using CONN v20.b. For

static connectivity (sFC), an ROI-based functional connectivity model

(bivariate correlation) was specified in the 1st-level analysis. The

model included 105 regions covering the cortex (91 regions) and sub-

cortex (14 regions) provided with CONN (parcellations as per the

Harvard-Oxford cortical and subcortical maximum likelihood atlases).

The cerebellum was excluded from the ROIs due to coverage artefacts

in the images. Normalization of correlation values was performed

using Fisher's z-transformation.

For dynamic connectivity, two approaches were employed. The

direct approach involved decomposing each session into 24 sliding

windows of length 100 s and step size 25 s. Each window comprised

35 fMRI volumes. Following this, ROI-based functional connectivity

was obtained for each sliding window in a similar way to the static

connectivity approach (dSW).

The indirect dynamic connectivity, or dynamic ICA approach

(dICA), is a relatively new approach that was introduced with the

CONN toolbox. Here, the dynamic connectivity is estimated by first

obtaining the different modulatory circuits and the rate of connectiv-

ity change between the ROIs at the group level, which are then back-

projected to the individual level in a gPPI model (Alfonso Nieto-

Castanon, 2020). The computation involved group-level ICA decom-

position of the ROI-ROI connectivity timeseries into 20 components

(selected by default in CONN), removal of ICs with spatial kurtosis <3

(resulted in removal of five components), gPPI back-projection of the

remaining ICs to the individual subject level followed by temporal

smoothing of 10 s.

2.6 | Thresholding

All the connectivity matrices were then imported into MATLAB

R2021a, converted to raw correlation values and binarized using an

absolute threshold of 0.45 (correlation values >0.45 or <�0.45 were

retained). The value 0.45 was chosen after evaluating the network

global efficiency distributions for optimal separation between random

and ordered networks (maintaining optimal small-worldness) using

CONN's variable threshold explorer as, brain networks have been typ-

ically shown to be small world in nature (Bullmore & Sporns, 2012).

It is important to choose the right thresholding strategy when

performing binary network analyses in order to ensure correct inter-

pretation of the individual connections and the whole network after

binarization. There are several different strategies for this, each with

their own set of pros and cons (Fornito et al., 2016). Two of the most

common strategies are global (or weight-based) thresholding and

density-based thresholding. Global thresholding involves retaining

only those connections that are larger than a certain threshold. This

lays greater emphasis on the connection strengths, making sure that

only strong connections are retained, at the risk that the networks

have different connections densities. Density-based thresholding does

exactly the opposite, making sure all networks have the same connec-

tion density at the risk of including spurious connections. Based on

this one could conclude that for applications which focus on the

importance of individual connections, the global thresholding

approach is better; and for those which focus on network level mea-

sures such as modularity, the latter might be more appropriate. In

either case, the meaning of the connection strength and its interpreta-

tion should be clear before thresholding is applied.

Another important aspect for consideration is the direction of

connectivity, that is, positive or negative as they are indicative of dis-

tinct processes. Positive functional connectivity between two regions

in the brain shows that these two regions are active at the same time,

indicating direct involvement in the same process, while negative con-

nectivity reflects inhibitory or complementary interaction between

two regions.

Since the aim of this paper is to focus on changes in communica-

tion of individual regions, irrespective of whether it is excitatory or

inhibitory in nature, we have included both positive and negative

connections. Additionally, since it is important for the individual con-

nections to be comparable from a clinical perspective, we have cho-

sen a global thresholding strategy (correlation-based thresholding)

and retained connections that are stronger than 0.45. In addition,

however, we have performed analyses using density-based

(or sparsity-based) thresholding, and positive-only networks, and

compared the results to those in the main paper. These results and

the corresponding discussion can be found in the supplementary

materials.

2.7 | Network statics and dynamics

Static and dynamic graph theory was applied to the binary adjacency

matrices. Binary adjacency matrices can be visualized as binary graphs

with ROIs as nodes and the connections between them as the edges

of the graphs. An edge exists if the connectivity between them is

greater than the applied threshold (in our case, correlation >0.45 or

<�0.45). In this context, the following metrics were calculated:

1. Average path length: The path length is defined as the number of

edges between two nodes (minimum number of edges for shortest

path length), and the average path length (APL) of a given node is

the average of the shortest path lengths between that node and all

other nodes in the network. It reflects the functional integration

ability and the speed of serial communication through a node

(Achard & Bullmore, 2007; Sporns, 2013). The temporal equivalent

of the shortest path length is called the latency or the minimum

number of time points that need to pass before the information

can travel from one node to the other. Thus, temporal average

path length (tAPL) is the average of the latencies between that
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node and all other nodes in the network. As before, it reflects the

speed of communication in the dynamic network (Sizemore &

Bassett, 2018).

2. Clustering coefficient/temporal correlation coefficient: Clustering

coefficient (CC) is defined as the proportion of a node's neighbours

that are also neighbours of each other. It is a measure of functional

F IGURE 1 Data processing and analysis pipeline. (a) default preprocessing and denoising pipeline using CONN; (b) Static and dynamic
network analysis: calculation of static functional connectivity(sFC), dynamic ICA based dynamic functional connectivity (dICA) and sliding window
dynamic connectivity (dSW) followed by application of static and dynamic graph theory; (c) feature selection and prediction: feature pre-selection
using p-unc <0.05 on Kendall's tau between the YGTSS and each network measure, selected features are then fed to a leave one out (LOO-)
LASSO regression model to obtain optimal parameters for the prediction of the YGTSS; finally the weights of the features in the optimal model
are investigated.
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segregation reflecting the extent of the specialized information

processing a node is involved in. It reflects the average density and

intra-connectedness of the node's subnetwork (Latora &

Marchiori, 2001). Temporal correlation coefficient (tCC) is the

average topological overlap of a node's neighbours between two

successive time points (Sizemore & Bassett, 2018). Based on this

definition, tCC reflects the stability of a node's subnetwork in

dynamic performance. Nodes with a higher tCC would have a rela-

tively stable subnetwork organization throughout the network

dynamics.

2.8 | Feature selection and prediction

After calculation of network and node metrics for all the ROIs, the

Kendall's coefficient of concordance with the YGTSS was calculated

for each measure. Without correction for multiple comparisons, the

measures that were significantly correlated (p-value <0.05) were

selected as features for the YGTSS prediction model. (Table S1 lists

the Kendall's tau for each measure). For this purpose, a leave-one-out

(LOO) validated LASSO regression model was created, in which the

network features were used as continuous independent variables. The

Fisher's z transformed YGTSS was the continuous dependent variable,

and gender and medication were categorical variables. LASSO regres-

sion applies a regularization term to linear regression in order to per-

form variable selection, thereby assigning weights to predictor

variables in their order of significance and setting the weights of non-

significant predictor variables to 0. Hereafter, the non-zero predictor

variables identified by the model were inspected and have been dis-

cussed further. Figure 1c outlines the steps of the prediction model.

3 | RESULTS

3.1 | Connectivity estimation

The brain was divided into 105 regions of interest (ROIs) covering the

cortical and subcortical areas (based on the Harvard-Oxford cortical

and subcortical atlases), and the average time series of each ROI was

computed. Three types of functional connectivity were computed

from each ROI time series, namely:

• The static functional connectivity (sFC), which was obtained by

applying a weighted GLM model (bivariate correlation with hrf

weighting) to pairs of ROIs.

• The sliding window dynamic connectivity (dSW), which was

obtained by temporal decomposition of the ROI time series into

sliding windows of length 100 s and overlap 75 s followed by the

computation of bivariate Pearson's correlation in each sliding

window.

• The ICA based dynamic functional connectivity (dICA), which was

obtained by group ICA decomposition of the time series of all the

subjects followed by gPPI back projection of the independent com-

ponents to obtain the ROI BOLD responses. The data were decom-

posed into 29 ICs, and temporal smoothing was applied for 10s.

The number of ICs was determined by a data driven approach,

using the MDL criteria in the GIFT ICA toolbox. The connectivity

ICs arranged in the order of increasing kurtosis can be found in

Figure 2. The top 3 ICs were removed before back-projection and

dynamic functional connectivity estimation (ICs with kurtosis <3

were removed; images with low spatial kurtosis yield noise compo-

nents by identifying uniformly distributed or global connectivity).

F IGURE 2 Spatial properties of ICs obtained. The matrices are fully connected, but only connections with z-score > 2 have been displayed.
The first three ICs with low spatial kurtosis (<3) were removed before back projection and estimation of the dynamic functional connectivity.
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3.2 | Calculation of network measures

The connectivity estimates were used to investigate network proper-

ties in the brain. Classical static network theory was applied to the

static functional connectivity, and a newer dynamic network theory

was applied to the dynamic functional connectivity. Both approaches

used binarized adjacency matrices, and the binarization threshold was

chosen as 0.45 for the correlation coefficient between two ROIs. Thus

connections >0.45 or <�0.45 were retained as 1s and others were

converted to 0s. This threshold was chosen to retain the maximum

number of connections while at the same time obtaining a small world

distribution (maximum separation between a random graph and a reg-

ular lattice), after inspecting the variable threshold explorer in CONN

v20.b. The static network distribution, along with the comparison of

regular versus a random graph for different thresholds, can be found

in Figure 3a. The distribution of APL and tCC were inspected for vari-

able thresholds applied to the dynamic networks as well (Figure 3b).

Dynamic networks have also shown to be small world in nature (Tang

et al., 2010). Since the inspection confirmed that 0.45 was a good

threshold to maintain dynamic small-world organization, the same was

used to maintain consistency. Moreover, a correlation value of 0.4 or

higher can be considered clinically relevant when investigating syn-

chrony/communication between regions. Thus, choosing a value

lower than 0.4 would mean including weak and strong connections in

the same network, reflecting a clinically incorrect picture. On the

other hand, a value too high (such as higher than 0.5) would be signifi-

cant loss of connections to investigate. Therefore, a value between

0.4 and 0.5 can be considered clinically optimal when looking at

correlation-based connectivity. The static and dynamic network mea-

sures average path length and clustering coefficient/temporal correla-

tion coefficient were calculated for each ROI for each subject. The

mean and standard deviation of the network measures for each sub-

ject can be found in Figure 4.

3.3 | Predicting tic severity using LASSO
regression

A predictor model for tic severity was created by applying linear

regression with LASSO regularization to the network measures. This

was preceded by a feature pre-selection step in which the Kendall's

tau between each measure of each ROI and the YGTSS was com-

puted, and those with a p-uncorrected <0.05 were selected for the

regression model. Gender and medication were used as additional

binary covariates for the model. The leave one out validated LASSO

regression model yielded a minimum mean squared error (MSE) of

0.53 at a lambda (positive regularization parameter) of 0.0140

(Figure 5a). The predicted YGTSS during each fold of the LOO valida-

tion showed a spearman correlation of 0.78 with the actual YGTSS.

Figure 5b shows the correlation plot between the predicted YGTSS

and the actual YGTSS. The coefficient of determination (R2), repre-

senting the goodness of fit, was found to be 0.43. In addition, we per-

formed LOO-training + testing analyses, in which a LOO-validated

model was created on 16 subjects and tested on 1 subject for each

different test subject. This, however, did not yield reliable results

owing to the reduction in power. The results are available in

Figure S2. The purpose of this study is to explore the regions that

contribute to the predictor model creation, in order to better under-

stand tic pathophysiology. The validation of this model needs to be

performed in future studies on larger sample sizes.

3.4 | Feature space examination

Upon inspecting the feature space obtained by the model, five predic-

tors were identified, all of which were dynamic sliding-window (dSW)

network measures. There was no significant contribution by the static

and dynamic ICA (dICA) networks. The temporal correlation coeffi-

cient (tCC) was the more relevant measure, with three out of eight

identified features involving this measure. The other two features

involved the average temporal path length (tAPL). Both binary predic-

tors, gender, and medication, did not have any effect on the model.

The specific regions and the corresponding features are explained in

further detail in the following subsections.

3.4.1 | The temporal correlation coefficient (tCC)

In the slow dynamic network (dSW network), the tCC of the left pre-

central gyrus (PreCG l), the right temporooccipital fusiform cortex

(TOFusC r) and the right caudate nucleus (Caudate r) were identified

as predictors with Kendall's correlation coefficients of 0.36, �0.38,

�0.39 and model weights of 0.56, �0.28 and �0.24, respectively. As

tics are typically motor in origin, it is no surprise that the primary

motor cortex (i.e., PreCG l) appears as the predictor with the highest

weight of 0.56 in the model. The temporal correlation coefficient indi-

cates the stability of a node's subnetwork during the dynamic course

of information processing. This means that over a broad temporal

scale, the precentral gyrus typically switches communication channels,

receiving from and sending information to different subnetworks over

the course of time. Failure to do so results in the constant subnetwork

participation observed in relation to tic severity. In contrast, the nega-

tive correlation of the tCC of the TOFusC r and the Caudate r to the

YGTSS indicates that an unstable subnetwork organization of these

two regions may be related to tics.

3.4.2 | The average temporal path length (tAPL)

In the slow dynamic network (dSW) the tAPL of the right supracalcar-

ine cortex (SCC r) and the right frontal orbital cortex (FOrb r) were

identified as predictors with a Kendall's tau of 0.39 and 0.36 and

model weights of �0.08 and 0.31, respectively. The tAPL reflects how

fast information is transferred between different subnetworks in time.

A smaller temporal path length indicates that a node is well connected

to other nodes across time and is thus active in dynamics, rapidly

passing on information to other nodes. Consequently, our findings of

positive correlation between the tAPL of FOrb r and SCC r with the
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F IGURE 3 Threshold determination for static and dynamic networks. (a) Variable threshold explorer in CONN v20. (b) As we can see, the
separation between a random graph and lattice can be best observed between the threshold values 0.4–0.6. A value of 0.45 was chosen to retain
as many connections as possible while maintaining optimal separation. (b) Variable threshold for the dSW and the dICA networks: Here too we
see that at threshold values between 0.4 and 0.5, the average path length is >1 but equally low for the random graph as our data and the
temporal correlation coefficient is much higher than the corresponding random graph. Thus at these thresholds the network is small-world and to
maintain consistency we chose a threshold 0.45.
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YGTSS indicate selective connectedness and slow participation of the

FOrb r and the SCC r in time, contributing to tic severity.

The predictors of the dSW network with their respective Ken-

dall's coefficients and weights visualized on a 3D brain volume can be

seen in Figure 6.

4 | DISCUSSION

This study investigates the functional network correlates of tic sever-

ity in Tourette syndrome (TS) by using machine learning. Resting-state

fMRI data from TS patients were preprocessed and quality controlled,

F IGURE 4 Distribution of network measures. (a) mean and standard deviation of the static, average path length, and clustering coefficient/
(b) mean and standard deviation of the dynamic average path length, and temporal correlation coefficients of the dSW and the dICA networks.
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and static and dynamic functional connectivity were calculated. Net-

work theory was applied to evaluate brain communication strategies,

and the topological metrics were included in a LASSO regression

model against the Yale global tic severity scale (the YGTSS) to identify

the network features which yield the best predictability.

All of the identified predictors belonged to the slow dynamic net-

work (dSW network). Of these, the temporal correlation coefficient

(tCC) was the most relevant metric with three significant regions,

namely the left precentral gyrus (PreCG-l), the right temporo-occipital

fusiform cortex (TOFusC-r) and the right caudate nucleus (Caudate r).

The tCC of the PreCG-l was positively correlated with the YGTSS,

indicating a consistency in the subnetwork of the PreCG-l during

dynamic communication contributing to tic severity. Conversely, the

tCC of the Caudate r and TOFuSC-r were negatively correlated with

the YGTSS, indicating that changes in the subnetworks of these two

regions during dynamic communication may be instrumental in tic

severity. The preCG is the primary motor cortex that constantly com-

municates with other motor areas and subcortical brain regions to

plan and execute movements (Alexander et al., 1986). Thus, the lack

of network switching observed in dynamics indicates support for the

lack of inhibition hypothesis (Jackson et al., 2015; Lerner et al., 2012).

In normal brain functioning, spontaneous involuntary movements

would be constantly balanced by inhibitory signals from other brain

regions (observed as changing subnetworks in dynamics), and this fail-

ure of inhibitory control (observed as a constant subnetwork in

dynamics) would lead to the sustained motor action observed in tics.

Consistent activations in the pre-central gyrus have been reported 2 s

and 1 s prior to tic onset and at tic onset (Neuner et al., 2014).

F IGURE 5 Results of prediction model. (a) mean squared error (MSE) with error bars for LOO-validation of LASSO regression for different
values of lambda. The value of lambda with the minimum MSE (shown by the green line) was chosen as the optimal model. (b) The correlation plot
of the YGTSS predicted during LOO validation against the true YGTSS. Spearman's correlation is 0.78 and coefficient of determination is 0.4.

F IGURE 6 Predictors of tic
severity visualized. The features
obtained by the LASSO
regression model visualized on
the brain surface. Red indicates a
positive correlation with YGTSS,
and blue indicates a negative
correlation. The value of the
Kendall's correlation coefficient is
provided in the first parentheses,
the network measure followed by
its weight in the LASSO model is
given in the second parentheses.
All predictors belong to the dSW
network.
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The TOFusC in our atlas corresponds to the subregion of the fusi-

form cortex specializing in face perception known as the fusiform face

area (FFA) (Kanwisher & Yovel, 2006). It has been proposed that the

FFA encodes abstract semantic information associated with faces,

which is then later retrieved for social computations (Schultz

et al., 2003). The social dimension of tics has been emphasized in liter-

ature (Albin, 2018), where it is proposed that TS is a disorder of the

social decision-making network (SDM hypothesis). In this recent

review article (Albin, 2018), Albin has shed light on the possibility of

tics being distorted social signals, emphasizing the role of typical tic

movements, such as head, neck, facial and hand movements, in non-

verbal emotional communication (Ekman et al., 2013). The framework

of this new hypothesis puts together different pieces of the complex

puzzle, explaining the cardinal features of tic disorders, such as the

nature of tics, sex disparity and natural course of the illness, together

with the basal ganglia and amygdala abnormalities observed in imag-

ing (Neuner et al., 2010; Ramkiran et al., 2019; Werner et al., 2010)

and post-mortem studies (Albin, 2018). In this paper, Albin has further

highlighted the three-fold role of the amygdala in social processing,

that is, in social perception, affliction and aversion, proposing the idea

that the performance of the amygdala in the social functioning net-

works centred around it is altered by task engagement and attentional

loading, thus explaining the modulation of tics during task engage-

ment. The involvement of the amygdala in social processing has also

been highlighted by Adolphs and Spezio (2006). They have put forth

the idea that the amygdala attentionally modulates the visual and

somatosensory cortices, directing visuospatial attention to face gaze,

thus guiding contextual social behaviour. This framework brings

together the somatosensory, visual and attentional networks under

the umbrella of the amygdala, making it the key background integrator

of all these different networks. Thus, our findings relating to the

TOFusC indicate that via the amygdala, attention is directed to

abstract semantic information stored in relation to facial expressions

of present or past experiences and which further motivates social

behaviour. An unstable subnetwork organization of the TOFusC could

be leading to misinformed social signals.

The caudate nucleus is a key region of the basal ganglia that has

been shown to be implicated in tic disorders (Ramkiran et al., 2019). In a

previous study (Ramkiran et al., 2019), we showed increased connectiv-

ity of the right caudate to several regions of the cortex and an increase

in global efficiency in static networks as compared to healthy controls.

Hyperkinetic disorders have been hypothesized to originate from a

dysfunction of basal-ganglia-thalamo cortical circuits leading to hyper-

activation of the motor cortex. Our current findings show that an unsta-

ble subnetwork organization of the Caudate r is responsible for tics.

The other two predictors of the dSW network were the average

temporal path length (tAPL) of the right frontal orbital cortex (FOrb r)

and the right supracalcarine cortex (SCC r). The SCC, together with

the occipital pole (OP), is the location of the primary visual cortex

(Leuba & Kraftsik, 1994); however, preferential activation to face-

targets over non-face visual stimuli have been reported in the SCC in

an fMRI study (Dichter et al., 2009). This indicates its role in social

processing and is in line with the SDM hypothesis of TS (Albin, 2018).

An unstable subnetwork organization, while playing a key role in infor-

mation transfer, could indicate misinterpreted social signals (such as

facial expressions) being transmitted to other subnetworks, driving

inappropriate social behaviour, leading to tics (Albin, 2018).

The orbitofrontal cortex is a key region known to be involved in

the control of motor planning, decision-making and working memory,

through a basal ganglia loop. Reduced volumes with increasing tic

severity have been reported previously (Müller-Vahl et al., 2009). The

prefrontal areas comprising of the medial prefrontal and the orbito-

frontal areas are considered highest in motor hierarchy. Two basal

ganglia loops namely the dorsal prefrontal loop involving the dorsal

caudate and ventroanterior thalamus, and the orbitofrontal circuit

involving the ventromedial caudate and the dorsomedial pallidum,

involve communication with prefrontal cortex (Weeks et al., 1996). It

is proposed that the compulsion to tic originates in the orbitofrontal

cortex which is why it is a key region implicated in OCD (Beucke

et al., 2013). PET studies have shown increased perfusion in this area

during symptom provocation (Weeks et al., 1996) in OCD patients.

Our findings of slow and selective participation of FOrb r in associa-

tion to tic severity together with an unstable subnetwork organization

of the Caudate r show strong evidence in favour of the orbitofrontal-

basal ganglia circuit dysfunction.

There were no significant contributions of the dICA and the sFC

network indicating that the most valuable information is provided by

the slow dynamic communication. The faster dynamic and the static

connectivity approaches fail to capture valuable information regarding

tic pathophysiology. While it is understandable that the information

captured by the sFC is incomplete as the temporal dimension is lack-

ing, it is not entirely clear why the dICA approach fails too. One expla-

nation could be that the faster dynamics are not really altered in tic

disorders, and it is only the slower dynamics that lead to the symp-

tomatology. Another possible explanation is that the dICA approach is

not an accurate representation of the true dynamic connectivity as it

is estimated based on group ICA. Since group ICA would ensure that

only networks that are stable in the entire cohort are identified, and

then further used to estimate the connectivity at the individual level,

individual-level network instabilities could be potentially missed out.

Further validation studies are needed to find out which one of the

two is truly the case. In addition to the primary motor cortex and pre-

frontal cortex, our findings emphasize the role of several novel regions

of the temporo-occipital cortex in TS. The temporo-occipital cortex is

most well-known for its function as the visual cortex; however, more

recently, its involvement in social processing (Adolphs & Spezio, 2006;

Dichter et al., 2009) and psychiatric disorders, such as major depres-

sion (Liu et al., 2021), have come to light. These findings point to a

new dimension of understanding that is in line with the emerging

hypothesis of TS as a disorder of the social decision-making network

(Albin, 2018). A proposed visual social processing network mediated

by the amygdala (Adolphs & Spezio, 2006) involves communication

between the regions obtained in our study through the amygdala.

Thus, our network-based analysis approach helps in understanding

how information is dynamically processed by each specific region

engaged in this network in relation to tics in TS. It is interesting to
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note that, while several studies have shown a direct implication of the

amygdala in TS (Lerner et al., 2012; Neuner et al., 2010), our study

demonstrates that the network properties of the amygdala itself are

not direct predictors of tic severity, rather, the regions it communi-

cates with in the social processing context are. This broadens our

understanding on the roles played by other regions in the network in

addition to the amygdala itself.

5 | CONCLUSION

This study investigated the predictability of tic severity in Tourette

syndrome patients using machine learning on functional brain network

static and dynamic topology. The machine learning approach used for

this purpose was linear regression with Lasso regularization for pre-

dictor variable selection. Through this, several dynamic network mea-

sures and the corresponding key regions were identified as predictors

of the Yale Global Tic Severity Scale. Network topological measures

shed light on the communication strategies employed by the brain

and our study highlights altered communication strategies in the pri-

mary motor cortex, and dysfunction in the amygdala-mediated social

processing network and the basal-ganglia-thalamo-cortical network.

These findings have opened up new dimensions of understanding for

tic symptomatology.

6 | LIMITATIONS

The main limitation of this study is the small sample size owing to the

difficulty in acquiring good quality data, free of motion artefacts aris-

ing due to the motor tics experienced by the patients. However,

despite this, we observed convergence during leave one out valida-

tion, indicating the strength of our findings.
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